
Generic Types

The Java Collections collect data, but what kind of
data? Python doesn't care about types, so it will
let you have a list where one element is an integer,
the next is an object of class Person, the next is a
boolean, and so forth. Java does care about types.
Generally all of the objects in a collection have to
have the same type. But what type?

One option would be to have separate
implementations for collections with different
types of data -- one implementation for lists of
integers, one for lists of strings, and so forth. This
seems wasteful and error-prone.

Another option is make only one list structure and
make its base type be Object (the root of the class
hierarchy in Java; all classes are descended from
Object). We could cast all data into Objects when
we put them into the list and cast them back into
their real types when we take them out.

This would be both ugly and inefficient, and would
negate many of the advantages of having type
checking in Java.

Java's solution to this is to allow classes to parameterize
types. For example, in Lab 2 you will implement a class
called MyArrayList. Here is the start of this class
declaration:

public class MyArrayList<E> {
 E [] data;
 int size;
 public MyArrayList() {
 size = 0;
 data = new E[2];

A specific list might have type
 MyArrayList<String>

We will make a new array list of Strings with
 MyArrayList<String> L = new MyArrayList<String>();

Note that the constructor we call is
 new MyArrayList<String>()
though in the class declaration the contructor is defined as
 public MyArrayList()

Look again at the class declaration:
public class MyArrayList<E> {
 E [] data;
 int size;
 public MyArrayList() {
 size = 0;
 data = new E[2];

E is used as a type throughout this class
declaration. Of course, each instance of E refers
to the same type.

We could also have classes that use several type
parameters:

 public class Pair<A, B> {
 A first;
 B second;
 public A getFirst() {
 return first;
 }

The actual types put in place of the type
parameters need to be reference types -- classes or
arrays. Primitive types, such as int, boolean, and
float are not allowed. Fortunately, Java provides
wrapper classes for each of the primitive types.
For example, Integer is a Java class that holds a
single int value. Java even automatically wraps
and unwraps primitive types.

For example, suppose you want to make an ArrayList of
ints. The declaration is
 ArrayList<Integer> L = new ArrayList<Integer>();

We could then call the add method for this list to put a
value into L with
 L.add(23);

Java automatically wraps 23 into an Integer to fit into this
list, as though you had written L.add(new Integer(23));

Similarly, you can say
 int x = L.get(0);
even though L.get() technically returns an Integer, not an
int.

